

Universidade Estadual do Sudoeste da Bahia

Departamento de Ciências Exatas e Naturais

2 – Vetores Física I

Prof. Roberto Claudino Ferreira

ÍNDICE

- 1. Grandeza Vetorial;
- 2. O que é um vetor;
- 3. Representação de uma grandeza Vetorial;
- 4. Soma Vetorial;
- 5. Regra do polígono;
- 6. Regra do paralelogramo;
- 7. Subtração de Vetores;
- 8. Soma vetorial num triângulo retângulo.

OBJETIVO GERAL

Explanar as principais propriedades matemáticas a cerca das operações vetoriais.

Grandeza Vetorial e Grandeza Escalar

1. Grandeza Escalar: Possui apenas módulo. Ou seja, não exigem uma orientação

Ex: Massa, Densidade, Tempo, Temperatura, etc.

2. Grandeza Vetorial: Possui módulo, sentido e direção, e portanto pode ser representado por um vetor.

Ex: Velocidade, aceleração, Força, etc.

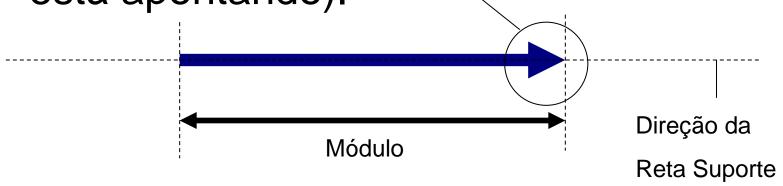
Grandeza Vetorial

Algumas vezes necessitamos mais que um número e uma unidade para representar uma grandeza física.

Sendo assim, surgiu uma representação matemática que expressa outras característica de uma grandeza... O VETOR.

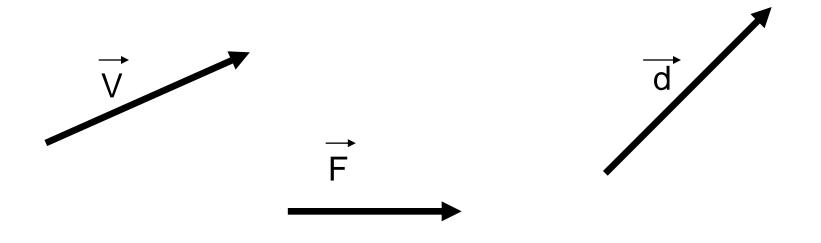
O que é um Vetor

- É um ente matemático representado por um segmento de reta orientado. E tem algumas características básicas.
- Possuí módulo. (Que é o comprimento da reta)
- Tem uma direção.
- E um sentido. (Que é pra onde a "flecha" está apontando).

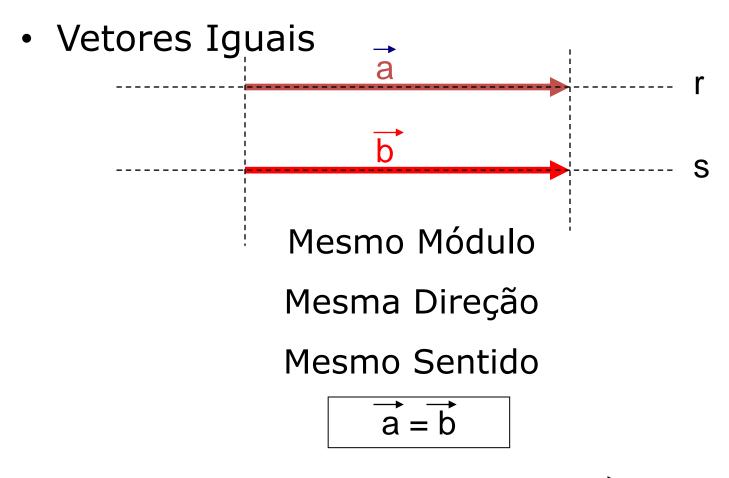


Representação de uma Grandeza Vetorial

 As grandezas vetorial são representadas da seguinte forma: a letra que representa a grandeza, e uma a "flechinha" sobre a letra. Da seguinte forma...

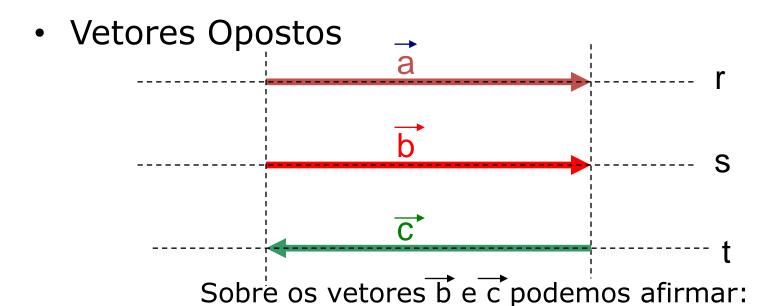


Comparação entre Vetores



O vetor \vec{a} é igual ao vetor \vec{b} .

Comparação entre Vetores



Tem o mesmo módulo, mesma direção mas sentidos opostos.

$$\vec{a} = \vec{b} = -\vec{c}$$

O vetor \vec{c} é oposto aos vetores \vec{a} e \vec{b} .

Soma Vetorial

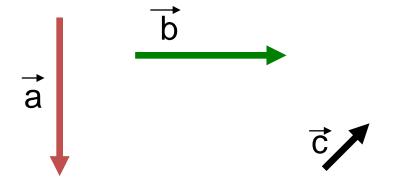
Através da soma vetorial encontramos o vetor resultante.

O vetor resultante seria como se todos os vetores envolvidos na soma fossem substituídos por um, e este tivesse o mesmo efeito.

Existem varias regras para fazer a soma vetorial.

Regra do Polígono

- É utilizada na adição de qualquer quantidade de vetores.
- Exemplo:

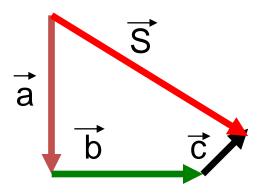


Determinarmos a soma $\vec{a} + \vec{b} + \vec{c}$

Para isto devemos posicionar cada vetor junto ao outro de forma que a extremidade de um vetor coloca-se junto à origem do outro.

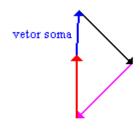
E o vetor soma, ou também chamado vetor resultante, será o vetor que une a origem do primeiro do primeiro com a extremidade do último, formando assim um polígono.

Fazendo a Soma pela Regra do Polígono



Passo a Passo para Regra do Polígono

Método da poligonal

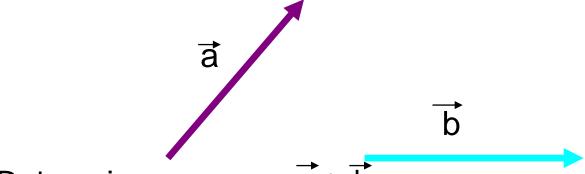


O vetor que representa a soma dos três vetores iniciais é o vetor azul

Prof. Luciano Massa

Regra do Paralelogramo

- É utilizada para realizar a adição de apenas dois vetores.
- Exemplo:

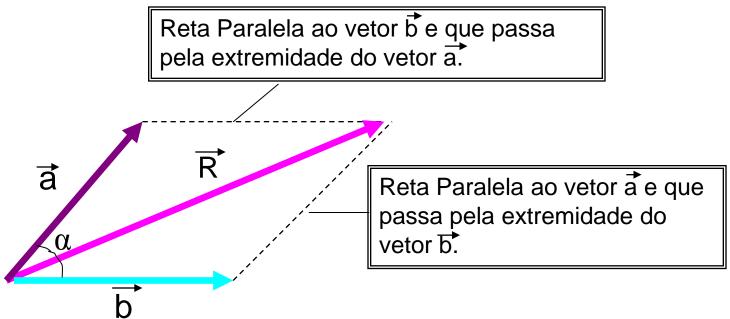


Determinar a soma $\vec{a} + \vec{b}$.

Para isto devemos posicionar a origem dos dois vetores no mesmo ponto e traçar uma reta paralela a cada um passando pela extremidade do outro.

E o vetor soma, ou também chamado vetor resultante, será o vetor que une a origem dos dois vetores com o cruzamento das duas retas paralelas a cada vetor, formando assim um paralelogramo.

Fazendo a Soma pela Regra do Paralelogramo

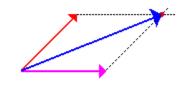


E o módulo, ou seja, o valor desse vetor resultante será dado por:

$$R^2$$
= a^2 + b^2 + 2.a.b.cos α

Fazendo a Soma pela Regra do Paralelogramo

Método do paralelogramo



O vetor azul é o vetor resultante

Prof. Luciano Massa

Casos Particulares da Regra do Paralelogramo

$$1^{\circ}$$
) $\alpha = 0^{\circ}$

$$S = a + b$$

$$2^{\circ}$$
) $\alpha = 180^{\circ}$

$$S = a - b$$

$$3^{\circ}$$
) $\alpha = 90^{\circ}$
 $S^2 = a^2 + b^2$

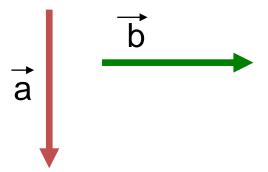
$$S^2 = a^2 + b^2$$

ESendo assim, qualquer que seja o ângulo entre los dois vetores o valor da resultante será:

$$|a-b| \leq R \leq a+b$$

Subtração de Vetores

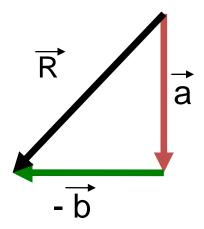
Considere os dois vetores a seguir:



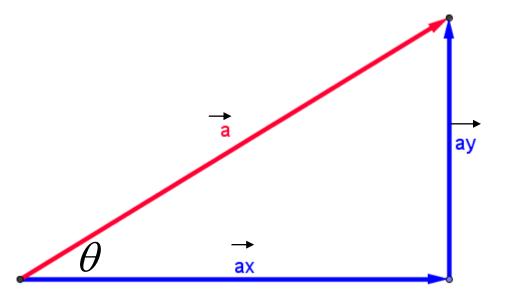
Realizar a subtração, $\overrightarrow{a} - \overrightarrow{b}$, é como somar \overrightarrow{a} mais um vetor de mesma intensidade, mesma direção mas de sentido oposto ao do vetor \overrightarrow{b} originalmente representado.

Na realidade, estaremos fazendo a adição do vetor \vec{a} com um vetor oposto ao vetor \vec{b} (\vec{a} + (- \vec{b})).

Fazendo a Subtração de Vetores



Soma Vetorial num Triângulo Retângulo



$$a_{x} = a.Cos\theta$$

$$a_x = a.Cos\theta$$

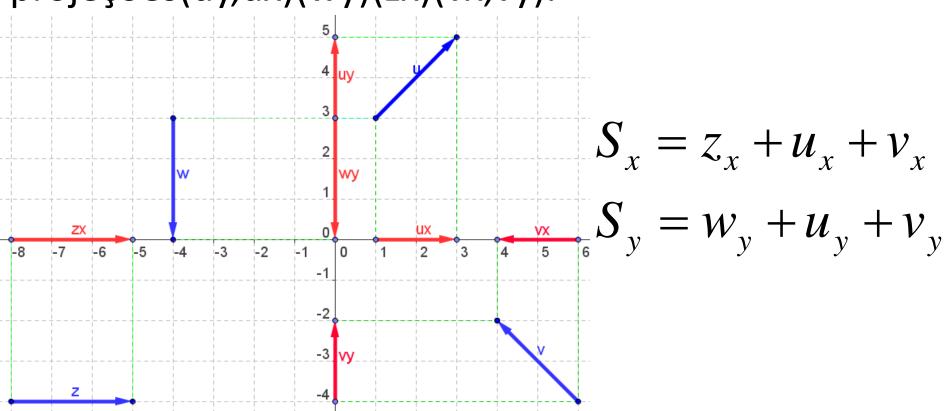
 $a_y = a.Sen\theta$

$$a = \sqrt{a_x^2 + a_y^2}$$

$$\tan \theta = \frac{a_y}{a_x}$$

Soma Vetorial Através de Suas Componentes Método das Projeções

Trata-se da soma das componentes dos vetores projetadas nos eixos cartesianos. Os vetores (u,v,w,z) na figura abaixo, podem ser somados através de suas projeções(uy,ux)(wy)(zx)(vx,vy).



Multiplicação de Vetores Por Um Escalar

O resultado da multiplicação de um número real (k) por um vetor \vec{v} é o vetor produto \vec{P} que apresenta as seguintes características:

Direção: a mesma de \vec{P} .

Sentido: para k>0 :o mesmo que P.

para k<0 : contrário ao de \vec{P} .

Módulo: $|\vec{p}| = |\mathbf{k}| \cdot |\vec{v}|$

Multiplicação de Vetor Por Um Vetor

Existem duas formas de se multiplicar dois vetores: Uma forma (conhecida como *produto escalar*) resulta em um escalar; a outra forma (conhecida como *produto vetorial*) resulta em um vetor.

1. Produto Escalar: $\vec{a}.\vec{b} = ab\cos\phi = escalar$

Onde a e b são os módulos dos vetores e ϕ o ângulo entre eles. Para o caso de mais de uma dimensão: $\vec{a}.\vec{b} = a_x b_x + a_y b_y + a_z b_z$

2. Produto Vetorial: $\vec{a}X\vec{b} = abSen\phi = \vec{c}$

Onde ϕ é o menor dos dois ângulos entre os vetores. Para o caso de mais de uma dimensão:

$$\vec{a}X\vec{b} = (a_y b_z - b_z a_z)\hat{i} + (a_z b_x - b_z a_x)\hat{j} + (a_x b_y - b_x a_y)\hat{k}$$

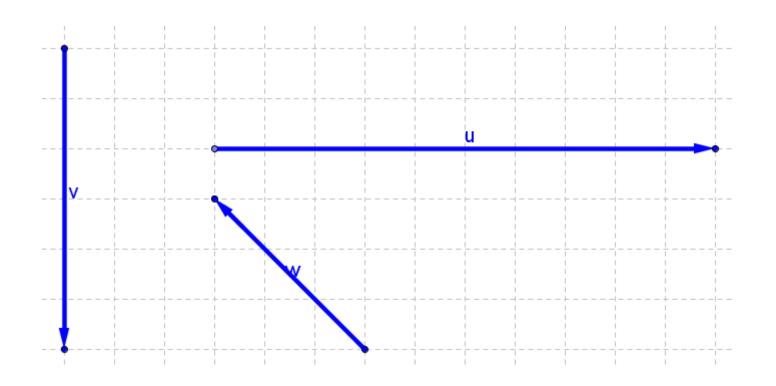
1º Problema:

Em uma prova de orientação você recebe a tarefa de se afastar o máximo possível de um acampamento através de três deslocamentos retilíneos. Você pode usar: (a) $\vec{a} = 2.0km$ para leste, (b) $\vec{b} = 2.0km30^{\circ}$ ao norte do leste; (c) $\vec{c} = 1.0km$ para oeste. Você pode também substituir os vetores por seus inversos. Qual é a menor distância que você pode atingir após o terceiro deslocamento?

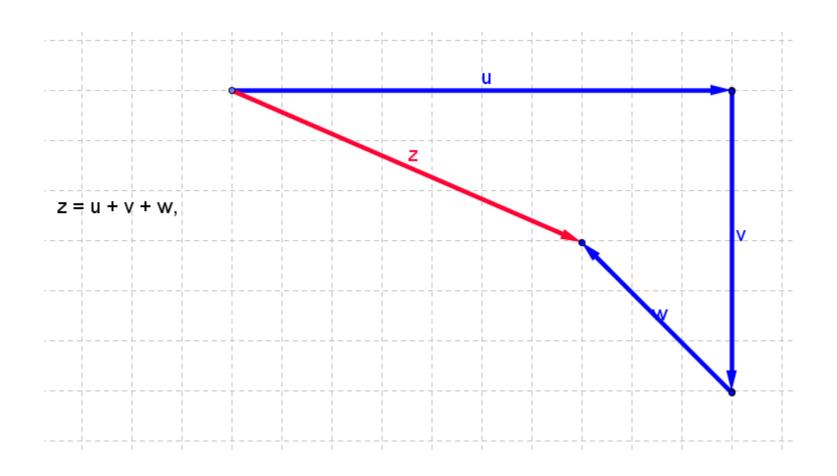
2º Problema:

Um pequeno avião decola de um aeroporto em um dia nublado e é avistado mais tarde a 215 km de distância, em um curso que faz um ângulo de 22 graus a leste do norte. A que distância a leste e ao norte do aeroporto está o avião no momento em que é avistado?

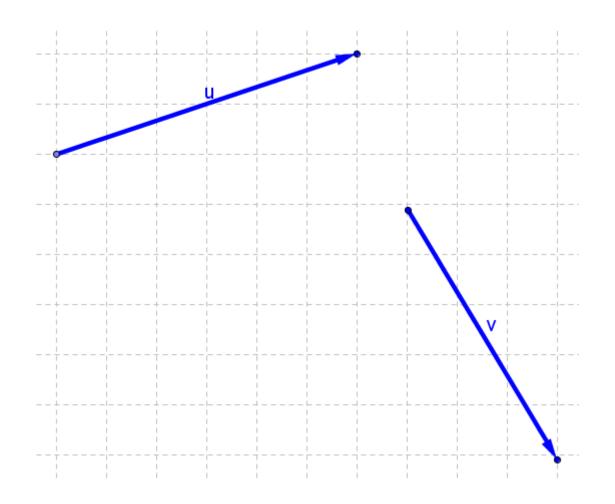
3º Problema: Realize a soma dos vetores abaixo pela regra do polígono.



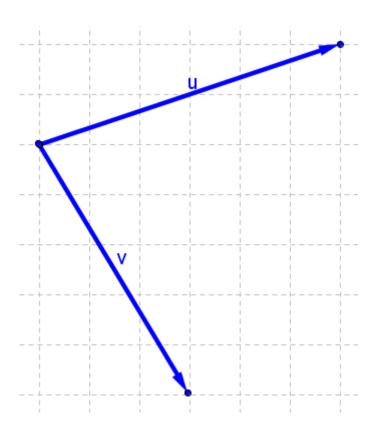
Solução do 3º Problema.



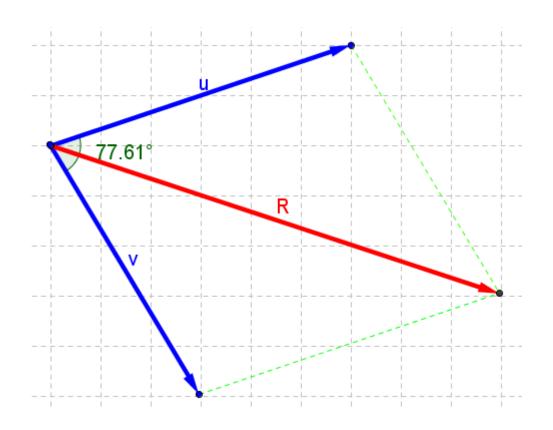
4º Problema: Realize a soma dos vetores abaixo pela regra do paralelogramo.



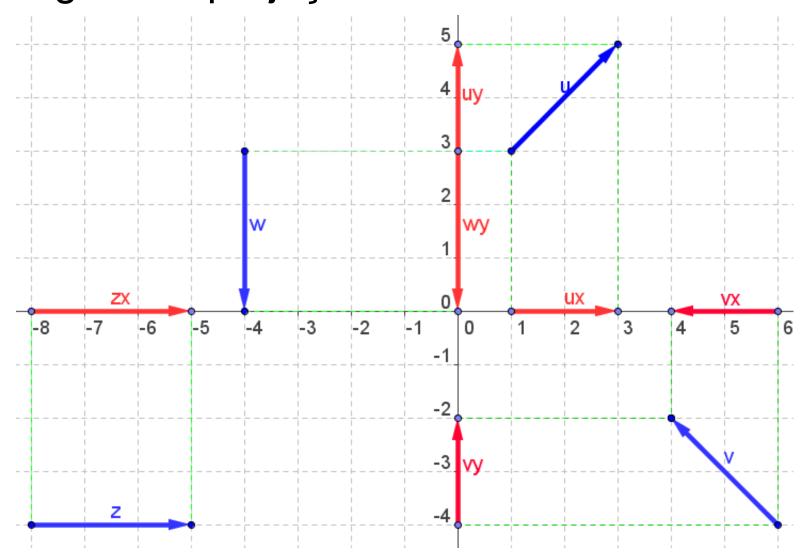
Solução do 4º Problema.



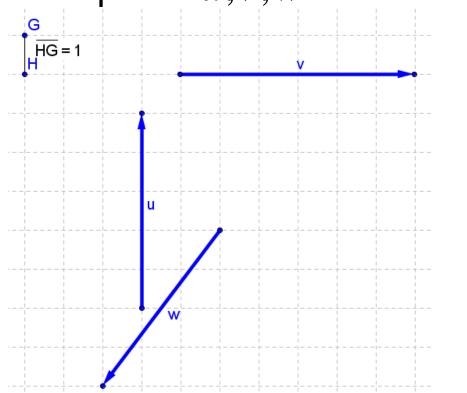
Solução do 4º Problema.



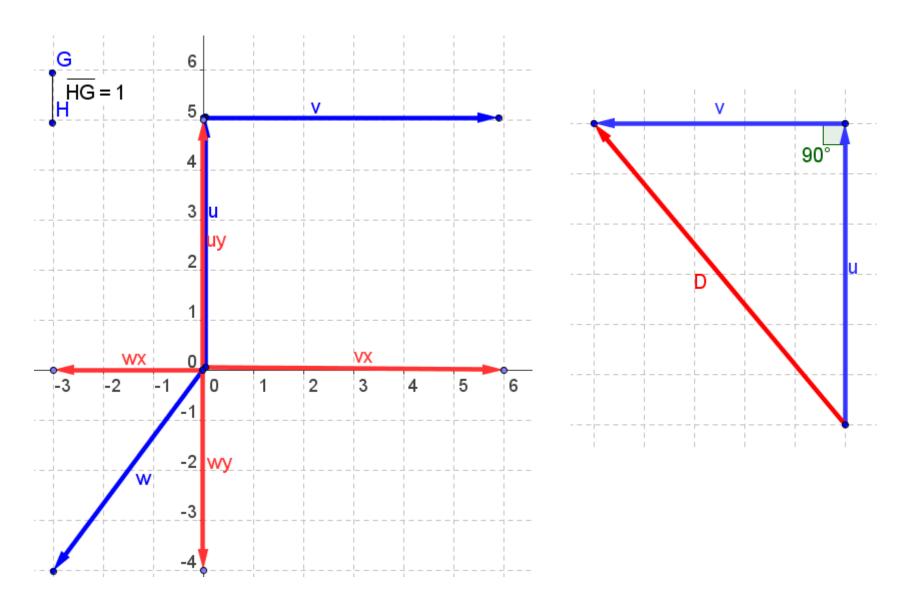
5º Problema: Realize a soma dos vetores abaixo pela regra das projeções.



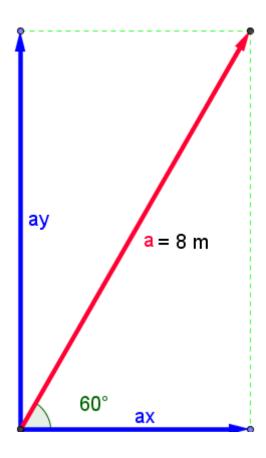
- 6º Problema: Dados os vetores da figura a seguir, determine:
- a) O vetor soma pelo método poligonal
- b) O vetor soma pelo método das projeções;
- c) O vetor diferença \vec{D} entre \vec{u} e \vec{v} ;
- d) Os vetores produtos \vec{p} sendo respectivamente k=2, k=-0,5 e k=-2 para: $\vec{u}, \vec{v}, \vec{w}$



Figuras das soluções b e c.



7º Problema: Achar o módulo das componentes retangulares do vetor resultante de módulo 8 metros, indicados na figura seguinte:



8º Problema: Qual é o ângulo entre:

$$\vec{a} = 3.0\hat{i} - 4.0\hat{j}$$

$$\vec{b} = -2.0\hat{i} + 3.0\hat{k}$$

9º Problema: Determine o produto vetorial entre:

$$\vec{a} = 3.0\hat{i} - 4.0\hat{j}$$

$$\vec{b} = -2.0\hat{i} + 3.0\hat{k}$$

Represente graficamente os vetores acima e sua resultante.